Space-time downscaling of precipitation using a combination of stochastic and physical methods

Existence of scale gaps

- Different problems in different scale
 - ✓ Dominant processes may be different
 - ✓ Forcing data properties may be different
 - ✓ Appropriate model structure may be different
 - Responses to the subsequent processes may be different

Challenge: Sp-Time downscaling

Several numerical models and reanalysis systems produce precipitation fields that are "Coarse" for many further uses

- > How to obtain more finer resolution—current focus
 - ✓ Meteorological understanding at finer resolution is not sufficient
 ♦ e.g. Tropical rain, high altitude precipitation
 - ✓ Nesting models are often numerically unstable and highly sensitive to boundary conditions
 - ✓ Need of primary data (for initialization and boundaries) are too high

Loss of details in coarse resolution

48-km; Hourly

3-km; 5-minutes

Known understandings on downscaling

- Interpolation techniques are not good enough, as it provides a smooth field. Precipitation is not smooth but a collocation of intermittent fields.
- Stochastic modeling based on autocorrelation do not yield a sufficient operational finer resolution precipitation field

- stochastic process does not synchronize with physics
- Multifractal method is unsuccessful to describe the precipitation structure due to inconsistent randomness of precipitation
 - mathematically sound and statistically perfect results often fails to generate a true rain structure in space
- Physical-based method is computationally demanding, parameterization issues and turn to high resolution modeling of circulation processes that beats the purpose of downscaling
- We still need to explore how do we bridge the scale gaps.

Known understandings on downscaling

Space-time scale inter-dependency

- ✓ Spatial downscaling alone and / or temporal downscaling alone does not serve the purpose of precipitation downscaling because of space-time scale complexities of precipitation structure.
- ✓ Types of precipitation, geo-climatic regimes and elevation correlations often provide insights but are often inconsistent across scales.

- ✓ Transferring data into multiple scales with appropriate scaling relations.
- ✓ Looking for scale invariant descriptions and limits of scaling relationships

Motivation

- Choose descriptive scales that minimize complexity but retain integrity
- ✓ Make use of coarse scale products in high resolution modelling and analysis systems → to analyse local scale effect due to global scale phenomenon
- ✓ Supply data for analysis and prediction of land surface conditions even in a data poor region

Space-time scale sensitivity

- The precipitation variability remains almost the same in a large spatial range but the variability changes rapidly in a small temporal range
- Regeneration of appropriate subgrid scale variability is the main challenge.

Multiplicative Random Cascade

- Geometry of rainy and non rainy regions
- Conceptual basis of turbulence eddies
- Multiplicative random cascades develop cascades over a continuous interval
- Random Cascade Generator

$$\mu_n\left(\Delta_n^i\right) = R_o L_o^d b^{-n} \prod_{i=1}^n W_j^i$$

Level 0

Level 1

Level 2

Output of the RC model

- Mathematically true, Statistically perfect results of downscaling is unable to describe rain structure
- lesson, generator itself should not be random

Bad example of Random Cascade

Good example of Random Cascade

Can we improve spatial downscaling?

- Obtain spatial patterns from other higher resolution sources and mimic the pattern by overlaying it on to the coarse scale precipitation field
 - ✓ Radar reflectivity
 - ✓ Satellite images
 - ✓ Composite of gauge-network and alternate observations
- > High uncertainty due to
 - ✓ Incompatibility of sources (representativeness??)
 - ✓ Errors in measurement (bias ??)
 - ✓ Quality control (post processed or raw??)
 - ✓ Inconsistent coverage (gaps and uncovered zones??)

Re-arrangement of generators

If the correlation of G-matrix and W-matrix is found poor, the W-matrix is allowed to re-position until it gets best correlation with G-matrix.

Results of RC HSA

> Spatially downscaled outputs are highly improved

Random Cascade only

Random Cascade HSA

Results of RC HSA

> Spatially downscaled outputs are

Random Cascade only

Random Cascade HSA

Temporal downscaling issues

- Differences between coarse resolution, fine resolution and best-fit interpolated fine resolution
- If the spatial scale is larger, the differences between the best-fit interpolation and the high resolution data points are smaller → illustrates how space-time scale interacts.
- Temporal interpolation at finer spatial scale introduce much larger errors than at coarser spatial scale.

Translation Model

- Projects the possible precipitation-cluster location based on tracked advection of past precipitation
- Non-linear projection
 - Introduce microphysical mechanism of rainfall process

$$\frac{\partial z}{\partial t} + u \frac{\partial z}{\partial x} + v \frac{\partial z}{\partial y} = w$$

Advection vectors and parameters

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} C_1 & C_2 & C_3 \\ C_4 & C_5 & C_6 \\ C_7 & C_8 & C_9 \end{bmatrix} * \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translation mechanism

$$w = 0$$
 $C_7 = C_8 = C_9 = 0$

Temporal Trends

From 60 minute resolution to 5 minute resolution (48-km)

From 30 minute resolution to 5 minute resolution

